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Abstract

Note pour Seb

Allo, je t'écris ici des notes au fur et à mesure que j'avance.

1- Je prends pour acquis que tu est "ribbit"-compatible. Dans la prochaine version, je vais toutes retranscrire les équations en latex. Ça vaut vachement le coup. Au cas où: Your registration key is YGT-TVEJ-MGYO-IFEX
2- Je garde ton intro, c'était très bien, mais je lui rajoute une "intro"! C'était à mon avis trop subit comme début. J'ai donc mis une mise en situation. Je pense que ça aide.

3- J'enlève les phrases du genre "the likelihood function well known to all psychologists". Tu serais surprise du nombre de psychologues qui ne connaissent même pas le terme!

4- Quelle est la différence entre Max et Supremum? S'il n'y en a pas, n'est-on pas mieux de rester avec la nomenclature la plus usitée?

5- J'ai fait une première série de simulation avec des mauvais prior. Tu te rappelles que Rouder se plaignait que mes priors déterminaient entièrement le résultat. Il avait tord, mais il fallait le montrer.
Improving maximum likelihood estimation using prior probabilities
Parameter estimation techniques are used to estimate the parameters of a data set assuming that the population follows a certain distribution. The most commonly used technique is the maximum likelihood estimation technique (MLE; see Van Zandt, 2000, for alternatives). Software using this techniques includes RTSYS (Heathcote, 1996), PASTIS (Cousineau and Larochelle, 1997) and DISFIT (Dolan, 2000; see Cousineau, Brown and Heathcote, 2004, for a review and a comparison)). Under this technique, the likelihood of the data given some parameter value is computed and a search for the parameters that maximizes the likelihood is performed. This technique is very general and can be applied to any population distribution (e.g. ex-Gaussian, lognormal, Weibull, etc.; see Luce, 1986, Appendix A, for a review of some distribution functions). In what follows, we will illustrate the techniques using response times (RT) and assuming the Weibull distribution whose parameters are: 
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, the shape parameter (the amount of asymmetry), 
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, the scale parameter (also called the spread) and 
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, the position parameter (i.e. the shift of the distribution).

The MLE technique is very simple to implement but, as we will see in the next section, is based implicitly on two simplifying assumptions.  At the other end of the spectrum, there exists the Bayesian estimation technique (BE). This technique estimates both the best-fitting parameters (point estimates) as well as their probable distributions. Furthermore, all the assumptions are explicit (they will be listed in the next section). The difficulty with this technique is that it is very difficult to implement, requiring multiple integrals which often are not available in closed form.
In what follows, we propose a new technique in between MLE and BE. This technique injects into MLE prior knowledge available on the parameters. Examples of obvious knowledge are the fact that 
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 and 
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 must be greater than zero and 
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 smaller than the smallest observed data. Another example is the fact that 
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 must be between 0 and 5 (or else, the asymmetry of the data would be strongly negative, a feature never seen for RTs). A more stringent prior would be the fact that in previous studies, the asymmetry parameter was always in the vicinity of 2 plus or minus 1 (here, a full meta-analysis would be required). This last piece of prior knowledge could be summarized and modeled reasonably well with a normal distribution with mean 2 and standard deviation 0.5.

Overall, the new technique that we call Prior-Informed MLE has only one implicit assumption left (as seen next) and is no more difficult to implement than the regular MLE technique. Contrary to BE, it can only return point estimates. However, it shares with the BE technique one of its most powerful aspect: explicitly defined priors.

Bayesian estimation technique and its relation to maximum likelihood
The Bayesian estimation technique has been used to update the probability of parametric models following the acquisition of new information (Bishop, 1995; Edwards, Lindman & Savage, 1963; Jeffreys, 1961; Hastie, Tibshirani & Friedman, 2001). The previous probability is called a prior, and the results after updating, a posterior probability. In the present context, a parametric model is defined by a distribution function chosen a priori and by a set of parameters (called θ hereafter). The posterior probability of the parameters is given by applying Bayes' theorem:


[image: image8.wmf])

(

)

(

)

 

(

)

 

(

X

θ

θ

X

X

θ

P

P

P

P

=


(1)
where X is a data set representing the new information, P() is the prior knowledge available on the parameters and 
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 is the posterior knowledge when the new data have been included. The first term of the rhs, 
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, is the likelihood of the data under the putative parameters . If the data were all independently sampled and came from the same distribution (i. i. d. assumption), then Equation 1 becomes:
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(2)
The last term P(X) is the probability of the observed data. The computation of this last probability is particularly cumbersome because it usually involves multiple integrals that often can only be estimated numerically (Bishop, 1995; Hastie et al., 2001). Its role is to normalize the posterior so that its remains a probability. The complexity of its calculation might be responsible for the unpopular character of the Bayesian approach and may explain the preference of social scientists for the simpler method of maximum likelihood estimation. The important point to note is that P(X) is independent of the model and is therefore irrelevant for the purpose of fitting a given data set. Hence, a more parsimonious procedure can be achieved by completely dropping this term


[image: image13.wmf])

(

)

(

)

 

(

θ

θ

x

x

θ

P

P

P

i

i

ú

û

ù

ê

ë

é

=

Õ


(3)
By noting that the MLE technique is "nested" within the BE technique, it is possible to identify the assumptions that are embedded implicitly in the MLE technique:

- The regular MLE technique has no prior information, that is P() = 1. In other word, under the MLE approach, all the parameter values are equally probable. We already mentioned in the context of the Weibull distribution that this is not true (e.g. 
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 must be between zero and five). The solution taken in the past was to feed that information to the minimization procedure (under the form of boundaries beyond which the search cannot go). However, a more appropriate solution would be to give this information to the function under the form of a prior.
- The regular MLE technique takes for granted that the parameters are independent. Hence, the search procedure can search each dimension in the parameter space more or less independently. After the best-fitting parameters are obtained, the correlation matrix of the parameters can be estimated using the Hessian (see e.g. Dolan & Molenaar, 1991). By contrast, BE does not make that assumption and P() and P( | X) are multivariate distributions from which marginal distributions for each parameter can be extracted.
By using MLE instead of BE, two capabilities are lost: 1) it is no longer possible to compute the posterior distribution of the parameters, only a point estimation is possible, and, 2) prior knowledge of the parameters’ distribution is not included. The first lost of information follows from the maximization procedure which replaces the integration and summarize the entire distribution using its mode. In this case, the mode of the posterior distribution is used, so the information loss is a negative function of the sample size. It is in Bayesian statistics that the precision of a measurement is the reciprocal of the posterior distribution’s variance, and that this metric can only diminish as new data is made available (Edwards et al., 1963; Jeffreys, 1961). While there is no general formula to describe the diminution of the posterior distribution’s variance following Bayesian updating, it is usually very fast so that the posterior mode can adequately summarize the posterior distribution as soon as a fairly small amount of data is available (Bishop, 1995; Edwards et al., 1963).
The lost of priors in MLE can be counteracted by reintroducing it. Because P(X) is a constant, we note that:
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Similar to what is usually done when maximizing likelihood, the logarithm of this function can be used instead, and the function maximized: 
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We call this method prior-informed maximum likelihood and, if the parameters are assumed to be independent, we can re-write the equation:
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This formulation has the advantage that it shows the fact that the prior distributions of the parameters are playing the role of penalty terms. For example, whenever the estimated parameter would fall near the center of mass of the prior, the penalty term would play only a marginal role in the estimation process. In contrast, parameter values far away from the center of mass would be pushed back toward the center of mass (an effect termed shrinkage in Rouder et al., 2005) to increase the overall likelihood. The push (given by the penalty term) is stronger whenever the parameter value is unlikely according to the prior.

Another advantage of the prior-informed maximum likelihood method is that it can be used to explicitly constraint the parameter values. For instance, if a parameter cannot be assigned negative values, the probability of negative values can be set to zero (and Log[0] returns -(, a very large penalty indeed). On the other hand, no preference on the parameter value could be assessed by a uniform distribution, thus adding a constant to the likelihood function.
A numerical example with simulated response times

To examine the aptitude of the prior-informed MLE technique to return parameter estimates, we ran a series of simulations. We also used cases where the priors were wrong and where the priors were true. This last condition is important to make sure that the priors are not solely determining the resulting parameter values.
We varied the sample sizes (n, 16, 24, 32, 40 and 48) and the true 
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 (either 1.5 or 2.5). The prior used was on 
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 only, assuming that it was normally distributed with a standard deviation of 0.5. The mean value of the prior was either correct or incorrect.

In a typical simulations, a random sample of size n is generated with true parameters 
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. 
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 and 
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, being simple scaling parameters, were fixed at 100 and 300 respectively. The resulting sample is then analysed using regular MLE and prior-informed MLE to get the best-fitting parameters of the sample. This procedure is repeated a thousand times and statistics on the estimated 
[image: image23.wmf]

 are computed.

In all the simulations, the Simplex method for the parameter search was used. The additional priors (
[image: image24.wmf]

 > 0, 
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 < Min(X) and 0 < 
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 < 4) were always used. Note that the limits on 
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 are symmetrical about 2 and 1.5 and 2.5 are both at the same distance of 2.

We used two true 
[image: image28.wmf]

, 1.5 and 2.5, because the MLE technique (and the BE as well) are biased, tending to return estimates 
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 that are smaller than the true 
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. Hence, on half the simulations, the priors are in the opposite direction of the bias and on the other half, in the same direction as the bias.
The results of the mean difference between the estimates are seen in Table X. As seen, the priors influence the estimates when both the priors are correct and incorrect. When the priors are correct, they clean the estimates by eliminating outlying values. For example, with the regular MLE technique, about 20% of the estimated 
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 are beyond 3.26 CHECK, for which the data should have a negative skew. These estimates are of course inappropriate and with the PI-MLE, they disappear completely. In addition, the blablabla
A few examples of the distribution of 
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 are shown in Figure X.

The effect of the priors becomes rapidly very small when n increases. For sample sizes of 48, the influence on the mean 
[image: image33.wmf]

 is about 2% CHECK of the true parameter value whatever the prior and the true 
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.

Insert Table X and Figure X about here

An example using empirical data
Rouder, Lu, Speckman, Sun and Yiang (2005, also see Rouder, Sun, Speckman, Lu and Zhou, 2003) argued in favor of a Bayesian hierarchical model for fitting Weibull distributions to response time data with multiple participants and/or conditions. This method is particularly appropriate when the number of observations in a cell is small but many participants measured in the same condition are available. It works by injecting prior knowledge regarding plausible parameter values. Whenever a sample would return very unlikely estimates – with respect to the priors –, the estimates are pushed towards more likely values.
In simulations, Rouder et al. (2005) tested the Hierarchical Bayesian (HB) method of parameter estimation against –among others – the maximum likelihood (ML) method. It is found that for very small samples (80 participants with only 20 observations each), HB yielded root mean square errors of estimation (RMSE) that are hundreds of thousands of times smaller than ML's.

This test was unfair as it failed to recognize the fact that modellers commonly inject priors into the ML procedure: they do so through the use of constraints. For example, many researchers, including Rouder et al. (2005, p, 221), believe that the shape parameter obtained after fitting a Weibull distribution to empirical response time data should not be larger than 5. Hence, the usual likelihood function is maximized with the constraint that this parameter be 5 or below. Here we show how these constraints, and more generally any prior, can be integrated into the likelihood function, allowing all the flexibility of HB technique within a simpler framework.
Following these authors, we assumed three priors:
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where A is any number as long as it is smaller than the smallest observation in that cell and the parameters of the two Gamma distributions are given by the expected values of the hyperparameters (Rouder et al., 2005, p. 221). We used for A the smallest response time minus 1 ms. The mean value of g is 2.0 with a standard deviation of  0.2 and the mean value for g is 28.5 with a standard deviation of 6.27 (which corresponds to a mean  value of 0.18 s with a standard deviation of 0.04 s). The simplex algorithm was used to search the best-fitting parameters (Nelder and Mead, 1965).
The likelihood function in the simulations becomes
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This formulation shows that the parameter  is not independent from the data since its prior depends on Min(X). It spells out explicitly a well-known fact in the statistician's community: that the (weak) regularity conditions are not satisfied when fitting a Weibull distribution using ML. This is one reason why fitting the Weibull distribution is so problematic (see Smith, 1985, for more details and Kiefer, 2005, for the regularity conditions).
The results of our simulations are shown in Table 1 along with the results reported by Rouder et al., (2005) for HB and regular ML.
Insert Table 1 about here
As seen, the prior-informed ML method fairs considerably better than the regular ML. As said previously, this is not a surprise since the regular ML technique used by Rouder et al. had absolutely no prior on the possible parameter values and particularly on the shape parameter (Rouder et al. provide more details). More importantly, the prior-informed ML method performs much better than HB for the shape parameter () and generally a little better for the other two parameters (, ). The exceptions are the group parameters, small samples, where HB performs best for those two parameters. On average, there is a general advantage of the prior-informed ML method over the HB method. 
The superiority of prior-informed ML over HB may have two explanations: Either HB returns more variable estimates (i.e. is less efficient) or the estimates are, on average, off-target by a larger amount (i.e. is more biased; ML is known to be biased with respect to the Weibull distribution, Hirose, 1999). Sadly, the measure adopted by Rouder et al. (2005), the RMSE, cannot separate these possible explanations because RMSE is a compound of both bias and efficiency.
 However, we note that the RMSE for the shape parameter are always large (roughly three times larger for HB than for prior-informed ML). Current works shows that a bias in  cascades on the other estimates (or conversely, if the shape parameter is unbiased, the other two parameters will no longer be biased). The general superiority of prior-informed ML might be caused solely by its aptitude to estimate more accurately the shape parameter.
Discussion

The prior-informed ML method does not have the full capabilities of the Rouder at al.’s hierarchical Bayesian approach for many reasons. Among others, the priors are static; they don't get revised by Bayesian computations. Also, it cannot have multiple layers of prior distributions. Finally, maximizing the prior-informed ML searches for the mode of the distribution. By contrast, Bayesian techniques will integrate it, weighting the values of the posterior distribution by their priors. However, when needing a point estimation of the parameter value, Rouder et al. used the mean of the posterior. Hence, if the priors are assumed normal, the point estimation of the hierarchical Bayesian model and the prior-informed ML will be identical.
The prior-informed ML method has some advantages. First, it is asymptotically equivalent to ML and therefore has all of its advantages for large n (including best efficiency). Second, it is a very convenient alternative to HB, as the results are very accurate on average (see Table 1). Third, it is very simple to implement. Finally, prior-informed ML is very intuitive. Both techniques can be used to build confidence intervals (HB using the posterior distributions and ML using the Hessian matrix; see Dolan and Molenaar, 1991).
An important challenge for future estimation techniques of the Weibull distribution parameters will be to show whether the estimates are biased or not. So far, this question is unanswered for the HB technique.
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Footnote
� To see that, let  be one parameter (either ,  or ), T denote the true parameter value and � EMBED Equation.3  ���. Then


	� EMBED Equation.3  ���


where � EMBED Equation.3  ��� is the mean parameter value found by the method so that 


	� EMBED Equation.3  ���


where Bias is a measure of the systematic estimation error made by a technique and Eff is a measure of the variability around the averaged estimates.
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