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Abstract 

Models of response time distributions are powerful 
models because they capture mean response times as well 
as variability and asymmetry. Some of these models are 
expressed with a closed-form equation (e.g. the Weibull 
distribution). However, a large number of others are not 
available in closed form, including convolutions. Fitting 
such distributions with the likelihood method is still 
possible with the help of numerical integration 
techniques. However, the time required to fit a single 
subject is a matter of days. We present an alternative to 
numerical integration based on rational approximations. 
This approach is 100 times faster so that fitting a single 
subject can be done in less than an hour. As shown with 
simulations, the approach can be fully automatized, and 
is both reliable and accurate. 

Introduction 
Response times (RT) give very precious information on 
elementary mental processes. Psychological models can 
be used to fit mean RT alone, or means and standard 
deviations of RT simultaneously (Cousineau & 
Larochelle, in press). However, a more stringent test is 
imposed when a model must fit the whole distribution 
of RT (Cousineau & Shiffrin, in press). Some models 
predict simple distributions and therefore are easy to fit 
to the RT data using the maximum likelihood method 
(described next). This is the case for the diffusion 
models which predict a Wald distribution (Ratcliff, Van 
Zandt, & McKoon, 1999). However, such models are 
the exceptions: a large number of models predict that 
the observed RT distributions will conform to a 
convolution of two or more simple distributions which 
cannot be simplified into a closed-form equation. 

A simple psychological model that predicts a 
convolution is one which assumes two stages, for 
example one stage for encoding the stimulus and one 
stage for making a motor response. The observed RT is 
the sum of the two processing times. In this situation, 
the mean RT is the sum of the two mean processing 
times. The variance in RT is also the sum of the 
variance of the two processes. However, the RT 
distribution is not the sum of the two processes 
distributions. It is obtained by an operation called a 
convolution of the two processes distributions.  

Because two-stage models are very frequent, 

convolutions occur naturally in psychology. 

Convolutions 
A convolution is the distribution of the sum of two or 
more random values. Formally, let T be a random 
deviate and T1 and T2 be the processes that contribute to 
T, such that T = T1 + T2. Often, only T is observable. 
We can estimate the probability that on a given trial, T 
will take the value t with the equation: 
 )&Pr()Pr( 21 stst −==== TTT  
for all s (because s and t – s cannot be negative response 
times in psychology, we have the constraint that 0 < s 
< t). Assuming that the second processing time is 
independent of the first, we can write: 

 
∫ −=×==

∀−=×===
t dssts

sstst
 
0 21

21

 )Pr()Pr(                

 )Pr()Pr()Pr(

TT

TTT
 (1) 

Equation 1 is the basic equation for convolutions. When 
assumptions are given on the distributions of T1 and T2, 
Eq. 1 can sometimes be solved in closed form. Let 
f1(t | θ1) and f2(t | θ2) be two probability density 
functions (pdf) for T1 and T2 with parameters θ1 and θ2 
respectively. The convolution is often denoted using the 
* so that (f1 * f2)(t) yields the density that the sum of the 
two processes equals t. 

As an example, if f1 is the normal distribution with 
parameters {µ1, σ1

2} and f2 is also normal with 
parameters {µ2, σ2

2}, Eq. 1 is easy to solve, and the 
result of (f1 * f2)(t) is normal with parameters {µ1 + µ2, 
σ1

2 + σ2
2} (Cramér, 1947). 

Another example often seen in psychology relates to 
the Poisson race model (Townsend & Ashby, 1983). 
This model assumes that when n spikes reach a certain 
neuron, this neuron is triggered. Suppose that under 
given conditions, a spike occurs every τ milliseconds on 
average. If the time between two spikes is random 
following a Poisson process (an exponential 
distribution), then the total time before the neuron fires 
is given by T = T1 + T2 + … + Tn. The distribution of T 
is a convolution of n exponential distributions. Again, 
this convolution can be solved and yields a gamma 
distribution with two parameters {n, τ} (Luce, 1986). 

On other occasions, the convolution cannot be 
solved in closed form but good approximations exist for 



its computation. This is the case for the exGaussian 
distribution (Ratcliff, 1979). It is based on the 
assumptions that the decision process is modeled by an 
exponential distribution and that all the other processes, 
owing to the theory of errors (Gauss, 1809/1864), are 
normally distributed. The observed time is therefore a 
sum of a normal component and an exponential 
component. Using Eq. 1, we find: 
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where erf(t), often called the error function, is given by  

 erf(t) = ∫
−t
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This integral is not available in closed form. However, 
good approximations exist and are quite efficient in 
terms of computation time. The most commonly used 
approximation was obtained by using a ratio of two 
cubic polynomials (Kennedy and Gentle, 1980). 
Sometimes, by subdividing the curve in sub intervals, 
better approximations can be found. The erf function 
implemented on most programming platform is 
subdivided in three intervals, and for each, a rational 
approximation was found. As an example, the following 
is the rational approximation for the erf(x) function 
within 0 and 0.5: 
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When no approximation is available, an equation 
containing an integral can still be evaluated using 
numerical integration techniques (mostly based on 
Monte Carlo and Markov chain techniques). To estimate 
(f1 * f2)(t) at a single point t, these techniques use an 
approach analogous to throwing a large number of darts 
and finding the proportion of them that are below the 
curve. Hence, to evaluate the function at one point, 
hundreds or thousands of computations have to be done, 
resulting in very slow computations. 

This paper aims at presenting a solution to speed up 
fitting of convolutions. When fitting a convolution to 
RT data, the function has to be estimated for each datum 
and each parameter set explored. Because the 
convolution is so slow to estimate, finding the best-
fitting parameters typically requires from two to five 
days per subject on a 2.0 GHz PC. The approach 
described next will reduce this time by a factor of 100, 
so that fitting one subject is possible in about an hour. 

Distribution Fitting 
Before presenting the approach, we briefly describe the 
maximum likelihood method used to find best-fitting 
parameters (Cousineau & Larochelle, 1997). It consists 
in finding the parameters that make the data the most 
likely. Let the likelihood L of the data {ti, i = 1 .. n} 
given parameters θ be: 
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where n is the number of data to be fitted. When the 
data are independent, we can simplify the equation to: 
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using f to denote the pdf underlying the data which is a 
function of the parameters θ. The best-fitting parameters 
are those that make the overall probability L closest to 
1. To avoid underflow, it is often more convenient to 
use the log of the probabilities, so that the log likelihood 
LL is given by: 
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The best-fitting parameters θ * are those that maximize 
LL(ti, θ ) or equivalently, that minimize minus LL(ti, θ ): 
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Maximizing a function is an iterative process that 
requires considering many possible parameters. Some 
methods are based on gradient descents (Chandler, 
1965), others are based on geometric methods (simplex, 
Nelder and Mead, 1965). Typical code in Mathematica 
is given in Listing 1. 

Note that the programs in Listings 1 and 2 are not 
optimized for speed. By using Apply and Map instead 
of the summation, the code will operate much faster: 
-Apply[Plus, Map[Log[f[#,{p1,p2,p3}]]&,data]] 

In the simulations reported next, the code was 
optimized for speed. 

Objectives 
Distribution fitting of a convolution can be 
accomplished using numerical integration. However, 
this approach is too slow to be useful in any practical 
application. We propose in this paper to systematize the 
use of approximations. There exists nowadays 
algorithms that can find a good approximation to any 
function within a given interval [a, b] by evaluating this 



function at only a few selected positions. As soon as the 
data set is sufficiently large (n > n0), it is faster to find 
an approximation and use it n times that to estimate the 
original function n times using numerical integration. In 
the following, we explore one type of approximation, 
the rational approximation. We will examine how 
reliable the process is, how accurate the resulting 
approximations are, and how much faster fitting using 
approximations is. 

Finding Rational Approximations 
A rational approximation to an equation f(x) in the 
interval [a, b] is another equation composed by the ratio 
of two polynomials of degree m and n (m can be equal 
to n). Let rm,n(x) denote such an approximation: 
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in which the coefficients a0, .., am and b0, .., bn ∈ Ñ 
have to be chosen so that the error  

 )()()( , xrxfx nm−=ε  

is small (Jackson, 1930). If f depends on parameters θ, 
every time θ are changed, a new approximation has to 
be found. 

It is possible to demonstrate (Petrushev & Popov, 
1987) that for any continuous function f(x), x being 
restricted to a domain [a, b], there exists a single set of 
coefficients { a0, .., am, b0, .., bn} so that the difference 
is the smallest. Further, there exists an algorithm, the 
Remez algorithm (described in Petrushev and Popov, 
1987) that can find these coefficients rapidly (the 
algorithm is said to be quadratically convergent). 

The Remez algorithm is not particularly complex to 
implement and is already provided with some software 
(such as Mathematica, by loading the 
NumericalMath`Approximations` library). Fitting a 
distribution is therefore a two-step process: For a tested 
θ, find an approximation, then compute LL using the 
approximation instead of the original equation. Listing 2 
shows an example of code in Mathematica which 
automatically finds a rational approximation r(x) of 
degree 10, 10. 

Reliability of the Approach 
We tested the approach under three aspects: its 
reliability, its accuracy and its speed. The following 
simulations were run using Weibull distributions. It was 
used because of its relations to psychological models 
(Cousineau, Goodman & Shiffrin, 2002). Its pdf is 
given by: 
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where α is the shift parameter, β is the scale parameter, 
and γ is the shape parameter. When the shape is 1, the 
Weibull reduces to a shifted exponential distribution. 
Unless the shape parameter is 1, a convolution of two 
Weibull distributions never yields a closed-form 
equation. 

Reliability 
Reliability measures whether the approach always 
returns an approximation. To test this, we generated 
random parameters for two Weibull components that 
were convolved. We then looked whether an 

<< Statistics`ContinuousDistributions`  
data = ReadList@file, RealD;
n = Length@dataD;  
f@x_, θ_D := PDF@WeibullDistribution@θP3T, θP2TD, x − θP1TD ê; x ≥ θP1T
f@x_, θ_D := 10−50 ê; x < θP1T  
FindMinimumA

−‚
i=1

n

Log@f@dataPiT, 8p1, p2, p3<DD,

8p1, 250, 300<,
8p2, 50, 150<,
8p3, 1.8, 2.2<
E  
 
Listing 1.  A typical Mathematica code for finding the best-fitting parameters. The distribution f in the example 

is a Weibull distribution (built-in) with three parameters θP1T  (the position), θP2T  (the scale) and θP3T  (the 
shape).  



approximation was found. 
The parameters were as follow: α1 and α2 were 

normal with mean 250 and standard deviation 40; β1 
and β2 were normal with mean 60 and standard 
deviation 10; γ1 and γ2 were normal with mean 2 and 
standard deviation 0.2. The means were chosen so that 
the resulting distributions look like an RT distribution. 
α1 + α2 is a lower bound so that Pr(T < α1 +α2 ) = 0. 

The approximations requested in all the following 
simulations were ratios of polynomials of degree 10 on 
both the numerator and the denominator. The 
approximation had to be valid within the interval [α1 + 
α2, α1 + α2 + 6 ( β1 +β2 ) ], going well beyond four 
standard deviation above the mean. 

Repeated over a thousand replications, the process 
never failed, always returning an approximation. 
Figure 1 shows one such approximation. As seen the 
approximation is visually quite good. However, it is 
sometimes hovering around zero in the tails. The curve 
should not go beyond zero since it is suppose to 
approximate probabilities. Further, later on, when we 
proceed to distribution fitting, computing the log of a 
negative value stops the minimization algorithm. To 
avoid these problems, we added a condition that if the 
approximation returns a value below zero, 10-16 should 
be returned instead (see Listing 2). Note that the true 
probability of sampling a RT in these areas is quite 
small (once every million samples approximately). 

Accuracy 
Accuracy being crucial, we tested it from three different 
points of view. 

 
Area Under the Curve The maximum likelihood 
method assumes that a probability density function is 
used in Eq. 2. Because the area under a pdf is 1, the area 
under the approximation should also be 1. We generated 
the parameters of a convolution randomly as above and 
then generated an approximation r(x) over the interval 
[α1 + α2, α1 + α2 + 6 ( β1 +β2 ) ]. Afterward, the area 
under the curve was estimated.  

Repeated over a thousand replications, the largest 
absolute deviation to 1 was in the order of 10-10 which is 
of the same magnitude as the numerical integration 
error. 

 
Likelihood Result The fitting procedure relies on the 
LL(ti, θ ) quantity to guide the search for the optimal 
parameters. Therefore, this quantity must be very 
accurate. To test this, we first generated random 
parameters as above, followed by the generation of a 
sample containing 1200 deviates. One deviate was 
obtained by generating two Weibull deviates with 
parameters {α1, β1, γ1} and {α2, β2, γ2} respectively and 
adding them. Finally, the quantity LL was computed 
using the true parameters, once with the convolution 
equation (and numerical integration), and once with the 
rational approximation. The rational approximation was 

<< Statistics`ContinuousDistributions`
<< NumericalMath`Approximations`  
data = ReadList@file, RealD;
n = Length@dataD;  
f@x_, θ_D := PDF@WeibullDistribution @θP3T, θP2TD, x−θP1TD ê; x ≥ θP1T
f@x_, θ_D := 10−50 ê; x < θP1T  
FindMinimumA

r@x_D = RationalInterpolation@f@x, 8p1, p2, p3<D, 8x, 10, 10<,
8x, Min@dataD, Max@dataD<D;

−‚
i=1

n

Log@If@r@dataPiTD ≤ 0, 10−16, r@dataPiTD DD,

8p1, 250, 300<,
8p2, 50, 150<,
8p3, 1.8, 2.2<
E  
 

Listing 2. A typical Mathematica code for finding the best-fitting parameters using an approximation. The 
approximation is found within the interval [Min(ti), Max(ti)] 

 



computed over the interval [Min(sample), 
Max(sample)]. 

Repeated over a thousand replications, the log 
likelihood using the convolution was on average 
-6299.566. The absolute deviation between the LL of the 
convolution and the LL of the approximation was on 
average 0.011, that is, an error in the order of 10-6. 

 
Parameter Estimation We also checked the error in the 
best-fitting parameter estimated. Because fitting 
parameters using a convolution is so slow (see next), we 
used a single Weibull distribution instead of a 
convolution. We generated random parameters α, β, γ in 
the same manner as previously, followed by the 
generation of a sample containing 1200 deviates. The 
best-fitting parameters of the sample were first found 
using the true Weibull pdf equation, returning θf* and 
second, using the rational approximation to it, returning 
θr*. To assess the difference between the two sets of 
parameters, we looked at the Euclidian distance between 
them: 

 ** rf θθ −  

Repeated over a thousand replications, the average 
distance between the two best-fitting solutions was 
0.00014, an error in the order of 10-8. 

The efficiency of the likelihood method was 

explored in Cousineau, Brown & Heathcote (in press). 
They found that the error between parameters from two 
samples generated with the same parameters was on 
average 0.2. This is larger than the error between the 
two methods as reported here by a factor of about 102. 

The second and third tests demonstrate that the error 
arising from using a rational approximation is totally 
negligible, being smaller than the error that would occur 
if numerical integration was used, and being much 
smaller than the sampling error. 

At this point, the two approaches are equivalent. 
They will diverge on the time they require. 

Computation Times 
To assess computation times, we generated random 
parameters for a convolution as above and from these, a 
sample containing 1200 deviates. Then, we measured 
the time taken to compute LL once with the true 
parameters and the convolution equation. We did not try 
to find the best-fitting parameters because the 
minimization process needs to compute LL from a 
hundred to a thousand times to converge onto the 
optimal parameters, slowing down the simulations 
accordingly. Using the same parameters and the same 
sample, we also generated an approximation r(x) to the 
convolution and computed LL using the approximation. 
We recorded the time taken to find the approximation 
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Figure 1. An example of approximation with magnification of the tails. The full line represents the true 
function (f1*f2)(t) and the dash line represents its approximation r(t) 



and the time taken to compute LL with the 
approximation. 

Repeated over a thousand replications, the average 
time to compute LL using the convolution required 164 
seconds on a 2.0 GHz PC with Mathematica 4.1. The 
times varied between 60 and 600 seconds.  

As for the second method, the average time to find 
an approximation r(x) was 0.96 second (varying from 
0.50 to 1.60 seconds). The variations in the time to find 
an approximation came from the Remez algorithm 
requiring one, two or three iterations to find the best 
rational approximation. The average time to compute LL 
with the approximation was nearly constant at 0.59 
seconds (the variations came from the operating system, 
Windows 2000). 

On average, the two-step method (finding an 
approximation, using it 1200 times) is 106 times faster 
than using a convolution 1200 times.  

Of course, Mathematica is notably known to be slow 
(but see version 5). Using, for example, Matlab would 
speed-up these computations by about a factor of 20. 
However, all the computations would equally benefit 
from this general speed-up so that the 100 to 1 ratio in 
favor of using an approximation would still be present. 

Conclusion 
The method presented here relies on brut computational 
power to find an approximation every time a new 
parameter set is tested. It does speed up computation 
times considerably. In fact, we can estimate from the 
above that as soon as the sample size is 8 or more, it is 
preferable to use rational approximations. In addition, 
the whole process can be automatized using the Remez 
algorithm which is already implemented in 
Mathematica. 

Yet, the process might be made even faster. For 
example, the exGaussian distribution is based on an 
approximation. However, it was possible to isolate the 
approximation from the parameters so that the same 
approximation (erf) is always used whatever the 
parameters θ. As such, the initial time to find the 
approximation occurred only once, and is no longer part 
of the computation. In the above simulations, it would 
eliminate the 0.96 second interval to find the 
approximation, resulting in a near 300 times speed-up in 
computation. It remains to be demonstrated whether 
convolutions (of two Weibull distributions for example) 
could be reduced to a single approximation independent 
of the parameters. 
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