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The most powerful tests of response time (RT) models often involve the whole shape of 

the RT distribution, thus avoiding mimicking that can occur at the level of RT means and 

variances. Non-parametric distribution estimation is, in principle, the most appropriate 

approach. However, such estimators are sometimes difficult to obtain. On the other hand, 

distribution fitting, given an algebraic function, is both easy and compact. We review the 

general approach to performing distribution fitting using maximum likelihood (ML) and 

a method based on quantiles (quantile maximum probability, QMP). We show that QMP 

has both small bias and good efficiency when used with common distribution functions 

(the Ex-Gaussian, Gumbel, Lognormal, Wald and Weibull distributions). In addition, we 

review some software packages performing ML (PASTIS, QMPE, DISFIT, 

MATHEMATICA) and compare their results. Overall, the differences between packages 

have little influence on the optimal solution found, but the form of the distribution 

function has: both the lognormal and the Wald distributions have non-linear 

dependencies between the parameter estimates that tend to increase the overall bias in 

parameter recovery and decrease efficiency. We conclude by laying out a few pointers on 

how to relate descriptive models of RT to cognitive models of RT. A program that 

generated the random deviates used in our studies may be downloaded from 

www.psychonomic.org/archive/. 
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Fitting Distributions Using Maximum Likelihood:  

Methods and Packages 

Since the seminal work of Townsend and Ashby (1983), it has been known that 

fitting or testing a model with mean response times (RT) alone has very poor diagnostic 

power. Often, models can mimic each other at the level of predicted means, even when 

their fundamental assumptions are diametrically opposed (e.g., a parallel race model can 

mimic the predictions of a serial model; see Van Zandt & Ratcliff, 1995). In this respect, 

median RT does not fare better than mean RT (Miller, 1988, Ratcliff, 1993). One solution 

is to consider RT means and variances simultaneously (Cousineau & Larochelle, in 

press). Although this provides greater constraint, some model mimicking can still occur 

(Townsend & Colonius, 2001). Higher-order moments (e.g., skew and kurtosis) are of 

little help because their sample estimates are unreliable for the sample sizes typically 

available in empirical research. As a result, the importance of considering the whole RT 

distribution for testing formal models is now generally acknowledged. 

Non-parametric approaches to the description of RT distributions are possible. For 

example, estimating the cumulative distribution function (CDF) is easily achieved using 

the cumulative frequencies of observed RTs. However, estimating the probability density 

function (PDF) and the hazard function is more difficult (see Silverman, 1986 on the 

former, Bloxom, 1984, for the latter). This is a problem because some models are most 

easily tested with nonparametric approaches (e.g., tests of the hazard function, Burbeck & 

Luce, 1982, and the crossing points of two PDFs, Ashby, Tein & Balakrishnan, 1993). 
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A parametric approach to RT distribution is achieved by introducing an important 

piece of information: a density or cumulative density function of the distribution. As we 

will discuss in the next section, fitting a distribution is rather easy and there are many 

software packages that can automate this procedure.1 In addition, the estimation method 

used, maximization of the likelihood function, is well understood and is not dependent 

upon the use of approximate heuristics (as opposed to non-parametric PDF and hazard 

function estimates, see Silverman, 1986). Also, once the distribution has been fitted, all 

associated functions (CDF, PDF, hazard and log-survivor functions) are completely 

determined. Finally, the fitting process consists simply of finding estimated values for a 

few parameters (generally three for RT distributions). Thus, the whole RT distribution is 

summarized with a very compact representation. 

All these benefits come at a cost. An incorrect distribution function, even one 

fitting the data reasonably well, may give a wrong indication on what kind of 

psychological model produced the data. For this reason, many authors prefer to use 

distribution functions as an atheoretical tool, a descriptive model (Ratcliff, 1979; 

Heathcote, Popiel & Mewhort, 1991). In addition, if the true RT distribution is in fact 

different from the fitted distribution in some fundamental way, the parameters may not 

capture the regularities that exist across different distributions (Schwarz, 2001). For that 

reason, it is desirable for experimentalists using the parametric approach to fit more than 

one distribution function. 

In this paper, we review software that can perform distribution fitting. All the 

software packages reviewed have the ability to fit many distinct distribution functions. 
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The most commonly used distributions in cognitive psychology are the ex-Gaussian 

(Hockley, 1984), the Gumbel (Yellot, 1977), the Lognormal (Ulrich & Miller, 1993), the 

Wald (Burbeck & Luce, 1980) and the Weibull (Cousineau, Goodman & Shiffrin, 2002) 

distributions (See Heathcote, Brown and Cousineau, in press, and Luce, 1986, appendix 

A, for details)2. The software reviewed can all fit these distributions, although some can 

fit others as well. They are: PASTIS (Cousineau & Larochelle, 1997), QMPE (previously 

called QMLE, Brown & Heathcote, 2003), DISFIT (Dolan, van der Maas & Molenaar, 

2002) and MATHEMATICA (Wolfram, 1996). This review will be carried out in Section 

2. Because the methods and the specific details of a fitting procedure are numerous, we 

provide in Section 1 some information to readers interested in programming their own 

fitting procedure. Although many readers will prefer to rely on existing software, these 

details are useful to know, as they can differ from one package to the other.  

1- Distribution fitting methods 

Estimation methods 

On one side, there is a data set T = { ti }, i = 1 .. n, a sample containing n response 

times (RT). On the other hand, there is a distribution to fit that depends on a parameter 

set θ. The distribution is given by its probability density function f. The objective of the 

fitting procedure is to find the estimated parameters θ̂  so that the theoretical distribution 

will be most similar to the distribution of the data set. 

There exist many methods that can be used to fit a distribution. Van Zandt 

reviewed Sum of Square Error (SSE) methods and the Maximum Likelihood method 
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(presented next). Using simulations, she found the standard ML method to be the best and 

SSE based on CDF almost as good. The criteria used were (1) bias: repeated over 

multiple samples, the average θ̂  should exactly be the true parameter set θ of the 

population where the samples were taken; and (2) efficiency: when repeated over 

different samples of data, the estimates θ̂  should have smaller variance than when 

estimated using other methods.  

We will concentrate on the maximum likelihood (ML) method. This method 

searchs for a set of parameters θ̂  that maximizes the likelihood of observing such data 

(Hayes, 1973). The likelihood of the data set T is the joint probability of the sample for a 

given model and set of parameters, )}Pr({ Τ=RT . When the observations are 

independent and measured with infinite precision, the probability of the sample becomes: 
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For a given parameter set θ̂  and a probability density function (PDF) f, and assuming the 

sample to contain independent deviates from this distribution, we may write: 
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The function L, called the likelihood function, is a measure of how likely the data set is 

given θ̂ . The larger it is, the more likely θ̂  is the true θ.3 

Occasionally, Eq. 1 can be solved analytically. For example, we know that the 

sample mean is a maximum likelihood estimator of the population mean µ if the 
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distribution is normal (Gaussian). Maximum likelihood estimators, whether analytic or 

obtained from numerical optimization have a desirable property: they are asymptotically 

(n → ∞) the most efficient, that is, they make maximum use of the information contained 

in the sample, resulting in the least variable estimation method (Van Zandt, 2000). Of 

course, it is not clear whether such asymptotic property holds for small samples as well 

(Heathcote, Brown & Cousineau, in press). 

One limitation of Eq. 1 is that it assumes infinite precision measurements. In 

practice, this is never achieved. In some RT experiments, precision is within 1 ms (± 0.5 

ms), sometimes more (e.g., for responses collected through a mouse, ± 6 ms, see 

Beringer, 1992). For data measured with precision 2 ε, the exact probability of observing 

the response time ti is given by: 

 ∫
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We can introduce a rectangular approximation by using 
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so that Eq. 1 becomes: 
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Because the (2ε )n term is generally ignored, numerical values of ),ˆ( TL θ  cannot be 

compared between apparatus that don’t have the same accuracy. However, it has no 

influence on the maximum likelihood estimates θ̂  obtained since the term (2ε )n is 



Methods and packages for fitting distributions 

8 

independent of θ and may be ignored. The method based on the continuous 

approximation to the likelihood function on raw data (Eq. 2), denoted ),ˆ( TL θ , will be 

called CML. 

An alternative estimation method, quantile maximum probability (QMP), was 

introduced by Heathcote, Brown and Mewhort (2000). First, a set of raw data T, is 

grouped into m categories described by the location of the m + 1 bounds, Q, called 

quantiles ( q̂ j, j = 0 .. m ≤ n). The quantiles are calculated from the order statistics of T 

(see Heathcote et al. for details), with the number of observations falling into the interval 

[ q̂ j-1 , q̂ j] denoted nj. In general, the q̂ j are chosen so that there are approximately the 

same number of observations in each quantile, but this need not always be true. Further, 

the bounds q̂ 0 and q̂ m are set at the limit of the fitted distribution, sometimes –∞ and +∞. 

Estimates are obtained by choosing parameters that maximize the products of the 

probability in each category.  
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One may intuitively expect QML to be inefficient, since transforming the raw RT 

into quantiles involves a reduction of the information available. On the other hand, if m is 

close to n, the loss of information can be quite small, and may also provide a benefit for 

finite samples. This is because there may be outliers in the data, and by creating 

quantiles, the absolute value of an outlying observation is simply replaced by an 

additional count in n1 or nm. Also, estimates are robust to the addition of a small amount 
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of error to a given RT, as Eq. 3 will not change at all, as long as the RT does not move 

across a quantile bound. 

Heathcote et al. (2000) showed that QML (Eq. 3) is superior to CML (Eq. 2) in 

terms of bias and efficiency when tested on simulated data generated by the ex-Gaussian 

distribution; Heathcote, Brown and Cousineau (in press) showed QML to be equal or 

better to CML on other distributions. In order to do so, they extended a software called 

QMPE to include the Lognormal, Gumbel, Wald and Weibull distributions using both 

CML and QMP estimation. Before proceeding to comparisons across software, we 

discuss some issues related to the implementation of a maximum likelihood fitting 

technique because the software reviewed in Section 2 differ on these implementation 

details. 

Implementing a maximum likelihood fitting procedure 

In order to implement a maximum likelihood (ML) procedure, three ingredients 

are required: (i) a distribution function to be fitted, (ii) an optimization routine, and (iii) 

starting values for θ̂ .  

To be a reasonable candidate for characterizing RT, a distribution function has to 

be able to accommodate positively skewed data. The most commonly used distributions 

are briefly described in Heathcote, Brown and Cousineau (in press) and their equations 

are presented in Table 1. The choice of a distribution provides the PDF equation f which 

is inserted into the function to be minimized (Equations 2 or 3), which in this context is 

usually called the objective function. Due to numerical considerations, the logarithm of 

the objective function is usually employed, because the use of the summation avoids 
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numerical underflows. For likelihood, for example, maximizing L(θ̂ , T) over the range 0 

to 1 is then replaced by minimizing –ln L(θ̂ , T), the value ranging from +∞ (-ln(0), 

unlikely) to zero (ln(1), absolutely certain). The same rational applies if quantiles Q are 

used instead or raw data T. Most computer software report the minimized value of 

-ln L(θ̂ , T). 

Insert Table 1 about here 

The second ingredient is an optimization procedure to minimize the -ln L(θ̂ , T) 

function, called in this context the objective function. Various algorithms exist, the oldest 

being introduced by Newton. All these methods are iterative, starting with a tentative θ̂ 0 

and updating it through various iterations until an optimal value, θ̂ p, is found.4  

Appendix A summarizes the most commonly used minimization algorithms. They 

are generally distinguished (Box, Davies & Swann, 1969) by whether they use analytic 

derivatives of the objective function (gradient methods) to guide search, or whether they 

use numerical approximations to the derivative (direct search methods). In general, 

gradient methods can find a minimum with a smaller number of iterations. However, the 

iterations may require more time to perform if the gradients are not available in closed-

form equations (as is the case for the ex-Gaussian distribution). 

The last ingredient in obtaining a solution consists in finding reasonable starting 

values θ̂ 0. If the surface of the objective function is quadratic it has only one minimum, 

and thus, all starting points will lead the minimization routine to the same optimal 

solution θ̂ p. In practice, however, there may be many local minima. The best way to 
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avoid false convergence in a local minimum is to start the routine at various locations, or 

to start as close as possible to the optimal solution. To achieve this, heuristic estimates 

can be developed, often based on the first few moments of the data in order to automate 

the starting point selection. These heuristics are not always accurate, due to sampling 

variance in the moment estimates. 

2- Testing the software packages 

We compare different software packages aimed at fitting distributions. These 

packages differ in the minimization routines used and in the heuristics used for starting 

values. They are briefly described in Appendix B. All of these packages allow the user to 

alter the starting value parameters. Table 2 reviews some features of the software, and 

Appendix C shows examples of commands for a typical fitting session with each. 

Insert Table 2 about here 

Simulation methods 

The simulations repeatedly sample random deviates from one of the five 

distributions, with known parameters, and then estimate those parameters using each of 

the software. The parameter estimates are then compared against the known values for 

both accuracy (bias) and variability (efficiency). For each of the five source distributions 

(ex-Gaussian, Gumbel, Lognormal, Wald and Weibull), we sampled n = 250 random 

deviates. The parameter values appear in Table 3, along with the associated (theoretical) 

mean, standard deviation and skew. They were chosen so that: (i) the means and standard 

deviations are all approximately 1000 and 100 respectively; (ii) the overall distribution 
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shapes are positively skewed (the Gumbel distribution has a constant skew). We repeated 

the sample-and-fit process a thousand times, making sure that the same samples were 

fitted by each software. 

Insert Table 3 about here 

The random samples were generated for each of the five distributions by variously 

transforming random uniform deviates.5 The source code of a program that generated 

these random values is available on the archive site of the Psychonomic Society. 

For all QMP calculations, the number of quantiles used was 32. This decision 

probably put the QMP method at a relative disadvantage because the small number of 

quantiles was unnecessarily restrictive.  

Simulation results 

The programs reviewed were quite robust, as they never crashed; 

MATHEMATICA couldn’t find a solution for only one simulated set of Wald deviates. 

Some analyses did not finish before they reached the maximum number of iterations 

allowed. However, because only QMPE and MATHEMATICA return this information, 

we did not remove these solutions from further analyses.  

Parameter space: Before turning to the computation of bias and efficiency, we take a look 

at the parameter space. In Figures 1 to 5 we plotted the estimated parameters as points in 

the appropriate parameter spaces (two-dimensional for the Gumbel and three-dimensional 

for the other distributions). Each point represents one of a hundred different samples. The 

central cross shows the position of the true parameter set used to generate each sample. 

The purpose of these graphs are to see to what extent parameter dependencies are present 
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and, most importantly, if some software packages are less sensitive to them than others. 

Figure 1 shows the parameters µ and σ estimated from the Gumbel random 

deviates. As seen the estimates are all spread out around the true parameters with no 

systematic deviations, indicating no important bias. Further, all software shows the same 

dispersion. 

Insert Figure 1 about here 

Figure 2 shows the parameters µ, σ, and τ estimated from ex-Gaussian distributed 

random deviates. One thing to note is that the cloud is not uniformly spread in all 

directions but tends to form an ellipse. This is easier to see using the projections on the 

sides of the plot box. This ellipse more or less goes through the main diagonal of the box, 

which illustrates the fact that the parameter estimates are not independent. For example, a 

moderately small estimate for µ can be compensated by a moderately large value of τ and 

a moderately small value of σ. QMPE and DISFIT returns information about this fact in 

the form of estimated parameter correlations, but the other software packages do not. 

Insert Figure 2 about here 

The results for the Weibull distribution were similar, as seen in Figure 3, except 

that the ellipse is oriented along a different diagonal of the cube. This indicates that a 

moderately large estimate for α can be compensated by a moderately small estimate for β 

and γ. Except for one outlier obtained by QMPE, the efficiencies are roughly comparable 

(that outlier generated an error exit code and so could have been either censored or 

remedied by manually setting the starting points). 
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Insert Figure 3 about here 

As can be seen from comparison across the panels of Figures 2 and 3, all software 

packages returned an ellipse of about the same shape and having the same orientation. In 

all cases, the centers of gravity of the clouds are near the central cross, suggesting only a 

small bias and the overall volume of the clouds suggest equal efficiency for all the 

software. Further investigation on biases and efficiency will be performed later. 

Figure 4 shows the – more complicated – results using lognormally distributed 

random deviates: the points form a crescent. As a consequence, many of the estimates are 

close to the true parameter values. However, the center of gravity, because of the 

curvature, will not be on the cross, resulting in mean bias. In addition, all four software 

packages are subject to this pathology (although to a lesser extent for MATHEMATICA), 

suggesting it is due to the distribution function, not in the optimization capabilities of the 

software. Finally, QMPE has a few outliers near the bottom of Panel A. On these 

occasions, a singular Hessian matrix error was also returned by QMPE.  

This pathology is not unique to the lognormal distribution. Wald-distributed 

random deviates also produced estimates that form a crescent when the parameter space 

is plotted, as seen in Figure 5. It had the same volume and orientation whatever the 

package used. Such nonlinear pathology cannot be detected by the estimated parameter 

correlations; only visual inspection of the parameter space shows it. 

Insert Figures 4 and 5 about here 

Package capabilities: In the following, we proceed to an examination of bias and 

efficiency across packages. However, we will not consider single parameter biases but 
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rather concentrate on the bias showed by the whole estimated parameter set relative to the 

true parameter set. To achieve this, bias was computed as the distance between the center 

of gravity of all the estimated parameter θ̂ i, i = 1 .. 1000, and the true θ. Thus, 

bias = ( )  θθθθ ι −=− ˆ)ˆ( EE  where E(θ̂ ) denotes the average position of all the 

estimates, and || . || denotes the Euclidean distance (the norm). Efficiency was computed 

as the standard deviation in the distances between each point θ̂ i and θ, ( )θθ −ιSD ˆ . 

Figure 6 shows the results expressed as percentage relative to || θ ||. Note that the 

scales for each panel differ. The two most biased distributions are the Lognormal and the 

Wald (bottom row), reaching an average of 1% and 25% biases. These are exactly those 

distributions showing nonlinear dependencies between parameter estimates, as seen in 

Figures 4 and 5. The other three distribution functions (Weibull, Gumbel and ex-

Gaussian) have much smaller biases, less than 1% in all cases. The bias is even smaller 

than 0.1% for the Gumbel. In this last case, since the parameter space has only two 

dimensions, the potential for bias is less. DISFIT turned out to be very apt (low bias, high 

efficiency) fitting Weibull deviates whereas MATHEMATICA outperformed the other 

packages for lognormal deviates. 

Overall, the QMP estimates produced by QMPE are on average as good as those 

produced by the CML methods obtained from the other software (PASTIS, 

MATHEMATICA and DISFIT) being worst for lognormal deviates. This is surprising 

considering the major information reduction imposed on the data: they were reduced 

from 250 raw data points to only 32 quantiles; near an eight-fold compression. QMPE 
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efficiency, indicated by the error bars in Figure 6, is slightly worse for the Weibull 

deviates, but results almost entirely from a few outliers (one is visible in Figure 3). 

Outliers generated by QMPE were often accompanied by an error exit code related to the 

singularity of the Hessian matrix. Therefore, a very strict selection of the successful fits 

would have increased considerably the efficiency of the QMPE method, to the detriment 

of having a little less than 5% of the data set either rejected or requiring refit. When 

manually fitting a data set, the user should explore the impact of changing the starting 

points or also changing the criteria for ending a search. 

Insert Figure 6 about here 

Conclusions 

Overall, the four software packages lead to very similar bias and efficiency 

measures, confirming that they all work properly and that the different platforms and 

algorithms used make little difference, at least with simulated data. This was true even 

though different optimization routines and different starting value heuristics underlie each 

package. The single most important factor on the quality of the estimates was the 

presence of non-linear relationships between the parameter estimates. This has 

implications when comparing groups of subjects. For example, the Wald estimates are so 

inefficient that they are likely to differ more within group than between groups. If the 

purpose is to see differences, then the ex-Gaussian and Weibull distributions are to be 

preferred as atheoretical summaries of shape. There exist strategies to reduce such non-

linearities (such as reparameterization, Bates & Watts, 1988). However, the required 

transformations are difficult to find, sometimes relying on a trial-and-error process. 
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3- General conclusions: From descriptive models of RT to RT models 

Parametric estimation of RT distribution provides a compact description of RT 

data. In addition, once the distribution is fitted, it is easy to calculate the PDF, CDF 

hazard and more. A main point of this paper was to show that good quality software 

packages exist to perform fits and that these packages are reliable and easy to use. 

A more theoretical question is to decide which distribution function to fit. As seen 

in this paper, there are five candidates that can readily be explored. Although there is no 

consensus at this point, two points should guide your choice.  

The first point concerns the informative utility of the parameters across samples. 

For example, if a single change in the experimental procedure results in changes in all the 

parameters of the distribution, then the representation is not compact across conditions. 

Thus, in choosing a distribution function as a descriptive model, the researcher should be 

mostly interested in how concisely the parameters capture the experimental manipulation. 

This should be sought even if it sacrifices a little in the quality of the fit.  

Differences in L(θ̂ , T) across distributions cannot be compared since distribution 

functions can have different capabilities for fitting random data. For example, a 

distribution with more free parameters has more liberty to fit the data and will likely have 

a smaller –ln L(θ̂ , T). One solution is to penalize for extra parameters, as in the AIC test 

(Bozgodan, 1987). However, even with an equal number of parameters, some functions 

may be able to accommodate more data sets, a property often termed “geometric 

complexity”. There exist methods to adjust the penalty term to compensate for 

complexity, but these can be computationally difficult (Myung, 2000, Grünwald, 2000). 
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The second important point in the choice of a distribution to fit is related to 

psychological models of cognition. Whereas a researcher might simply be interested in a 

descriptive model of RT for convenient communication of the results, a more ambitious 

approach is to have a model based on psychological mechanisms that can not only predict 

mean RT but also the shape and scale of the whole RT distribution. Two cases are then 

possible: First, the model can be analytically solved to yield an algebraic formula for the 

RT distribution (for an example, see Cousineau, in press). It can either be one of the 

distributions reviewed here or a yet-unknown distribution function. In this case, the 

modeler can fit this distribution and check that the parameters are acting according to a 

priori predictions (Schwarz, 2001). Second, in the case where the model cannot be solved 

analytically, the researcher can simulate his model and choose a descriptive model to fit 

those simulated RT. By doing the same to the observed RT distribution, the modeler can 

check that the descriptions are convergent. This is the approach used in Ratcliff (1979) 

where the ex-Gaussian was the intermediary between empirical and simulated data. 

Filling the gap between a model and RT data using more than just the predicted 

means is the best solution. However, it is possible that the observed RTs are 

contaminated by other factors such as fatigue or fast guess. We have thus to keep in mind 

the possibility of fitting mixtures of distributions (Cousineau and Shiffrin, in press; 

Dolan, van der Maas & Molenaar, 2002) or that the parameters of the distributions are 

changing over time. In this context, QMP estimation is likely to be more robust to the 

effects of outliers and measurement noise than standard CML estimation. 



Methods and packages for fitting distributions 

19 

References 

Ahrens, J.H. and Dieter, U. (June 1982) Computer Generation of Poisson Deviates From 

Modified Normal Distributions. ACM Transactions on Mathematical Software, 8, 

163-179. 

Ashby, F. G., Tein, J.-Y. & Balakrishnan, J. D. (1993). Response time distributions in 

memory scanning. Journal of Mathematical Psychology, 37: 526-555. 

Bates, D. M. &  Watts, D. G. (1988). Nonlinear regression analysis and its application. 

New York: J. Wiley and son. 

Beringer, J. (1992) Timing accuracy of mouse response registration on the IBM 

microcomputer family. Behavior Research, Methods, Instruments and Computers, 

24, 486-490. 

Bloxom, B. (1984). Estimating response time hazard functions: An exposition and 

extension. Journal of Mathematical Psychology, 28: 401-420. 

Box, M.J., Davies, D. & Swann, W.H. (1969). Non-linear optimization techniques. 

Edinburgh: Oliver & Boyd. 

Bozdogan, H. (1987). Model selection and Akaike's Information Criterion (AIC): The 

general theory and its analytical extensions. Psychometrika, 52: 345-370. 

Brown, S., & Heathcote, A. (2003). QMLE: Fast, robust and efficient estimation of 

distribution functions based on quantiles. Behavior Research Methods, Instruments, 

& Computers, 35: 485-492. 

Burbeck, S. L. & Luce, R. D. (1982). Evidence from auditory simple reaction times for 



Methods and packages for fitting distributions 

20 

both change and level detectors. Perception and Psychophysics, 32: 117-133. 

Chandler, P. J. (1965). Subroutine STEPIT: An algorithm that finds the values of the 

parameters which minimize a given continuous function [computer program]. 

Bloomington: Indiana University, Quantum chemistry. 

Cousineau, D. (in press). Merging race models and adaptive networks: A parallel race 

network. Psychonomic Bulletin & Review. 

Cousineau, D. &  Larochelle, S. (1997). PASTIS: A Program for Curve and Distribution 

Analyses. Behavior Research Methods, Instruments, & Computers, 29: 542-548. 

Cousineau, D. & Larochelle, S. (in press). Visual-Memory search: An integrative 

perspective. Psychological Research. 

Cousineau, D., Goodman, V. &  Shiffrin, R. M. (2002). Extending statistics of extremes 

to distributions varying on position and scale, and implication for race models. 

Journal of Mathematical Psychology, 46: 431-454. 

Cousineau, D., Shiffrin, R. M. (in press). Termination of a visual search with large 

display size effect. Spatial Vision. 

Dagpunar, J. (1988) Principles of random variate generation. Clarendon Press, Oxford. 

Dawson, M. R. W. (1988). Fitting the ex-gaussian equation to reaction-time distributions. 

Behavior Research Methods, Instruments, & Computers, 20: 54-57. 

Dolan, C. V., van der Maas, H. L. J. & Molenaar, P. C. M. (2002). A framework for ML 

estimation of parameters (mixtures of) common reaction time distributions given 

optional truncation or censoring. Behavior Research Methods, Instruments, & 

Computers. 



Methods and packages for fitting distributions 

21 

Dolan, C.V. & Molenaar, P.C.M. (1991). A comparison of four methods of calculating 

standard errors of maximum-likelihood estimates in the analysis of covariance 

structure. British Journal of Mathematical and Statistical Psychology, 44: 359-368. 

Fletcher, R. (1980). Practical methods of optimization. New York: John Wiley and sons. 

Gill, P.E., Murray, W. & Wright, M.H. (1981). Practical optimization. London: 

Academic Press. 

Gill, P.E., Murray, W., Sanders, M.A. & Wright, M.H. (1986). User's guide for NPSOL 

(version 4.0): A FORTRAN package for nonlinear programming (Technical report 

series No. SOL 86-2). Stanford University: Department of Operation Research. 

Grünwald, P. (2000). Model Selection based on Minimum Description Lengt. Journal of 

Mathematical Psychology, 44: 133-152. 

Gumbel, E. J. (1958). The Statistics of Extremes. New York: Columbia University Press. 

Hays, W. L. (1973). Statistics for the social sciences. New Yorl: Holt, Rinehart and 

Winston, inc. 

Heathcote, A. (in press). Fitting the Wald and Ex-Wald Distributions to Response Time 

Data, Behavior Research Methods, Instruments & Computers. 

Heathcote, A., Brown, S., & Cousineau, D. (in press). QMPE: Fitting the lognormal, 

wald, weibull and Gumbel distributions. Behavior Research Methods, Instruments, 

& Computers. 

Heathcote, A., Brown, S. & Mewhort, D. J. K. (2000). Quantile maximum likelihood 

estimation of response time distributions. Psychonomic Bulletin & Review, 9: 394-

401. 



Methods and packages for fitting distributions 

22 

Heathcote, A., Popiel, S. J., & Mewhort, D. J. K. (1991).  Analysis of response-time 

distributions: An example using the Stroop task.  Psychological Bulletin, 109, 340-

347. 

Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive 

processes. Journal of Experimental Psychology: Learning, Memory and Cognition, 

10: 598-615. 

Kemp, C.D. (1986). A modal method for generating binomial variables, Communications 

on Statistics - Theoretical Methods, 15, 805-813. 

Luce, R. D. (1986). Response times, their role in inferring elementary mental 

organization. New York: Oxford University Press. 

Marsaglia, G. and Tsang, W.W. (2000) A simple method for generating gamma variables, 

Transactions of the Mathematical Software, 26, 363-372. 

Miller, J. (1988). A warning about median reaction time. Journal of Experimental 

Psychology: Human Perception and Performance, 14: 539-543. 

Myung, I. J. (2000). The importance of complexity in model selection. Journal of 

Mathematical Psychology, 44: 190-204. 

Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization. The 

computer journal, 7: 308-313. 

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1986). Numerical 

Recipes The art of scientific computing. New York: Cambridge University Press. 

Ratcliff, R. (1979). Group Reaction Time Distributions and an Analysis of Distribution 

Statistics. Psychological Bulletin, 86: 446-461. 



Methods and packages for fitting distributions 

23 

Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological 

Bulletin, 114: 510-532. 

Schwarz, W. (2001). The Ex-Wald distribution as a descriptive model of response times. 

Behavior Research Methods, Instruments, & Computers, 33: 457-469. 

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: 

Chapman and Hall. 

Townsend, J. T. & Ashby, F. G. (1983). Stochastic Modeling of Elementary 

Psychological Processes. Cambridge, England: Cambridge University Press. 

Townsend, J.T. & Colonius, H. (2001, July). Variability of MAX and MIN statistics: A 

theory of the quantile spread as a function of sample size. 34th Annual Meeting of 

the Society for Mathematical Psychology, Providence, R.I.. 

Ulrich, R. & Miller, J. (1993). Information processing models generating lognormally 

distributed reaction times. Journal of Mathematical Psychology, 37: 513-525. 

Ulrich, R. & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of 

Experimental Psychology: General, 123: 34-80. 

Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & 

Review, 7: 424-465. 

Van Zandt, T. & Ratcliff, R. (1995). Statistical mimicking of reaction time data: Single-

process models, parameter variability, and mixtures. Psychonomic Bulletin & 

Review, 2: 20-54. 

Wolfram, S. (1996). The Mathematica Book (third edition). New York: Cambridge 

University Press. 



Methods and packages for fitting distributions 

24 

Yellot, J. I. Jr. (1977). The relationship between Luce's choice axiom, Thurstone's theory 

of comparative judgment, and the double exponential distribution. Journal of 

Mathematical Psychology, 15: 109-144. 

 

Archived materials 

The following materials and links may be accessed through the Pscyhonomic 

Society’s Norms, Stimuli, and Data archive, http://www.psychonomic.org/archive/. To 

access these files or links, search the archive for this article using the journal (Behavior 

Research Methods, Instruments, and Computers), the first author’s name (Cousineau) 

and the publication year (2004). 

FILE: Cousineau-BRMIC-2004.zip DESCRIPTION: The compressed 

archive file contains three files: 

randmod.f90 and random.f90 are the two parts of a Fortran 90 program that 

generates sets of random numbers corresponding to samples from the following 

distributions: ex-Gaussian, Gumbel, Lognormal, Wald and Weibull. The code is adapted 

from the work of Dagnupar (1988), Marsaglia and Tsang (2000), Ahrens and Dieter 

(1982) and Kemp (1986). 

readme.txt is a text file explaining the purpose of the program and how to 

compile it on most stations. 

AUTHOR’S EMAIL ADDRESS: denis.cousineau@umontreal.ca  

AUTHOR’S WEB SITE: http://mapageweb.umontreal.ca/cousined 
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Footnotes

                                                 

1 In the following, we will reserve the word “fitting” to mean the process of parametric estimation. 

2 PASTIS, QMPE, DISTFIT and MATHEMATICA use the same parameterization for the ex-Gaussian, the Gumbel, 

the Lognormal and the Weibull. For the Wald distribution, QMPE differs in using a = λ , and  m = a/µ. The Wald 

and the ex-Gaussian are not built-in into MATHEMATICA.  

3 To illustrate, consider a distribution that predicts only one possible value, say α with probability 1. If one hundred 

values are sampled, all identical and equal to say 10, then the likelihood that α is 10, L(10) is 1 × 1 … × 1 = 1. On the 

other hand, for any α not 10, L(α) = 0 × 0 … × 0 = 0. Thus, the parameter α = 10 maximizes the likelihood of 

observing such data. In general, distribution functions do not predict a single value, so the parameters that maximize 

the likelihood will not reach a value of 1 (and may even not be close to 1) but again, values closest to 1 indicate the 

most likely parameter estimates. 
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4 There are three kinds of stopping criteria that are used in optimization software. One is related to the decrease in the 

objective function. If the difference in the objective function from one iteration to the next is smaller than a fixed 

proportion (say 10-9), the algorithm considers itself close enough to the minimum and exits. The second stopping 

criterion concerns the change in the solution θ̂ . If the Euclidian distance between two successive solutions, measured 

in the n-dimensional space is smaller than a fixed proportion (say 10-4), the algorithm considers itself close enough and 

exits. The last stopping criterion is based on the maximum number of iterations (say 150) after which the algorithm 

considers that the minimum cannot be found and exits. 

5 The algorithm supplied with the Sun Forte © Professional Workshop Fortran compiler (version 6, update 2) generated 

the uniform deviates. This algorithm uses a pair of linear congruential generators, with a cycle length in excess of 250. 

As only approximately 224 samples were used for the current study the long cycle time ensures that samples were 

independent. Exponential, Weibull, Gumbel and χ2 deviates were all generated from uniform deviates by transforming 

them using the respective inverse cumulative distribution functions. Normal deviates were produced from uniform 

deviates (Press, Flannery, Teukolsky & Vetterling, 1986). The sum of normal and exponential deviates produced ex-

Gaussian deviates. Exponentially transforming normal deviates, and adding a shift parameter produced lognormal 

deviates. Finally, Wald deviates were produced from χ2 deviates followed by the addition of a shift parameter. 
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Appendix A: 

Optimization procedures 

Simplex: This derivative-free routine constructs a d-dimensional polygon having d+1 

vertices (a simplex, where d is the number of parameters to be minimized) in the 

parameter space. For example, in a three-dimensional space, the simplex is a pyramid. 

The value of the objective function is computed at each corner and the simplex reorients 

itself around the corner with the lowest value, which effectively approximates the 

gradient, and either contracts or expands. This procedure repeats until the simplex is 

reduced to a very small volume around a minimum. For more, see Nelder and Mead 

(1965), and Van Zandt (2000). 

Steepest descent: This gradient method searches the space by looking at the slope. If the 

derivatives are available in algebraic form, it is easy to locate the direction of steepest 

descent. If they are not available, the routine probes a few point in the parameter space 

surrounding the current θ̂ i to find the ideal direction by numerically approximating the 

derivatives. For more details, see Box, Davies, and Swann (1969). 

The two above methods are not quadratically convergent. If the objective function 

near the minimum is well approximated by a quadratic function (as is often the case), 

quadratically convergent methods are guaranteed to find the minimum to a certain 

precision with a fixed number of iterations (Fletcher, 1980). The following four methods 

have been proven to be quadratically convergent: 

Newton method: This method is the most efficient, given its assumptions are true. It is 
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based on the second-order derivatives of the objective function, called the Hessian 

matrix, H. Since analytic Hessians can be difficult to determine (either numerically or 

algebraically), this method is rarely used. Hessians are also useful to compute 

approximate standard errors (SE) and parameter intercorrelations (see Bates & Watts, 

1988, and Dolan & Molenaar, 1991). 

Quasi-Newton and conjugate gradient methods: These two methods generate an 

approximate Hessian Ĥ using first-order derivatives. They differ in terms of memory 

requirements. The first method updates large matrices to build Ĥ  whereas the second 

updates eigenvectors (Chandler, 1965).  For the small number of parameters typically 

minimized in RT distribution estimation, these differences are mostly immaterial. 

Sequential quadratic method: This method uses Lagrangians instead of Hessians (Gill, 

Murray & Wright, 1981). It is mostly useful when very restrictive constraints (in addition 

to non negative parameters) are imposed on the parameters, which is rarely the case with 

distribution fitting. 

Appendix B: 

Packages that performs Likelihood fitting 

PASTIS: A very simple software package which returns -ln ),ˆ( TL θ  and the best-fitting 

parameters θ̂ p . It has very few limits on the format of the input file (Cousineau and 

Larochelle, 1997; available at http://www.mapageweb.umontreal.ca/cousined/papers/02-

pastis). 

QMPE: In addition to fitting using both CML and QML, QMPE can also compute 
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quantiles and vincentiles (Dawson, 1988, Ratcliff, 1979). It also returns estimated 

standard errors of the parameters, calculated using the second derivative Hessian matrix. 

File format however is restricted to two columns: subject number and one RT per line 

(Brown & Heathcote, 2003; Heathcote, Brown & Cousineau, in press, available at 

http://www.newcastle.edu.au/school/behav-sci/ncl/). 

DISFIT: is a versatile fitting package, aiming at entirely different objectives than QMPE. 

While it can only minimize ),ˆ( TL θ , it can also fit mixtures of two or more distribution 

and fit data that have been truncated or censored (see Ulrich & Miller, 1994). It also 

returns statistics of goodness of fit (χ2 and Kolmogorov-Smirnov) and estimated standard 

errors of the parameters. However, like QMPE, the file format is not flexible: one subject 

per file, one column per file (Dolan et al., 2002, available at users.fmg.uva.nl/cdolan). 

MATHEMATICA/FindMinimum: the last software is the most versatile of all, being an 

all-purpose framework for data and function manipulation. It can fit any distribution that 

can be expressed by an algebraic formula, and, appropriately programmed, can compute 

starting values and quantiles as well as perform minimizations on truncated and censored 

data. However, this flexibility comes with large costs: (i) the user must be trained on how 

to use MATHEMATICA since it is a very rich environment; (ii) the analyses are much 

slower because the commands are interpreted, not compiled. MATHEMATICA, in 

contrast to all the above, is a commercial product (see www.wolfram.com for details). 

Other commercial software packages that allow the same flexibility are readily available; 

S-Plus, SAS and Matlab are perhaps the most widely used of these. For example, 

Heathcote (in press) provides S-Plus routines to fit the Wald. 
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Figure Captions 

Figure 1. Two-dimensional plots of the estimated parameters θ̂ i when the samples were 

generated with a Gumbel distribution. The central cross shows the position of the true 

parameter θ. Only a hundred samples are shown. Panel a) was obtained using QMPE, b) 

using PASTIS, c) using MATHEMATICA, and d) using DISFIT. 

Figure 2. Three-dimensional plots of the estimated parameters θ̂ i when the samples were 

generated with an ex-Gaussian distribution. The central cross shows the position of the 

true parameter θ. The gray points represent the 2D projections on the µ-σ, µ-τ, and σ-τ 

planes. Only a hundred samples are shown. Panel a) was obtained using QMPE, b) using 

PASTIS, c) using MATHEMATICA, and d) using DISFIT. 

Figure 3. Three-dimensional plots of the estimated parameters θ̂ i when the samples were 

generated with a Weibull distribution. The central cross shows the position of the true 

parameter θ. The gray points represent the 2D projections on the α-β, α-γ, and β-γ planes. 

Only a hundred samples are shown. Panel a) was obtained using QMPE, b) using 

PASTIS, c) using MATHEMATICA, and d) using DISFIT. 

Figure 4. Three-dimensional plots of the estimated parameters θ̂ i when the samples were 

generated with a Lognormal distribution. The central cross shows the position of the true 

parameter θ. The gray points represent the 2D projections on the κ-µ, κ-σ, and µ-σ 

planes. Only a hundred samples are shown. Panel a) was obtained using QMPE, b) using 

PASTIS, c) using MATHEMATICA, and d) using DISFIT. 

Figure 5. Three-dimensional plots of the estimated parameters θ̂ i when the samples were 
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generated with a Wald distribution. The central cross shows the position of the true 

parameter θ. The gray points represent the 2D projections on the κ-µ, κ-λ, and µ-λ 

planes. Only a hundred samples are shown. Panel a) was obtained using QMPE, b) using 

PASTIS, c) using MATHEMATICA, and d) using DISFIT. 

Figure 6. Bias and efficiency for the four software packages reviewed. Histograms 

indicate the bias, i.e. the average distance between the estimated parameter θ̂  and the 

true parameter θ. Error bars are the efficiency, i.e. the standard deviation in the distance 

between the estimated parameter θ̂  and the true parameter θ. Shorter bars indicate better 

efficiency. Top row comes from the 2-parameter distribution (the Gumbel); middle row 

from distributions that had linear dependencies between parameter estimates (ex-

Gaussian and Weibull); bottom row from distributions with non-linear dependencies 

between parameter estimates (Lognormal and Wald). 



Table 1.
Overview of the distribution functions

Distribution Probability density function Moments
ex-Gaussian

θ={µ, σ, τ}

Gumbel
θ={µ, σ}

LogNormal
θ={κ, µ, σ}

Wald
θ={κ, µ, λ}

Weibull 
θ={α, β, γ}

Notes:
E (RT ) is the expected (mean) value of the distribution, Var (RT ), its variance, and

Skew(RT)  is the Fisher measure of skewness, given by

Φ is the standard normal integral, given by 

and implemented on many computer languages with the expression:

ψ(1) = 0.577216 is the Euler constant  and ψ(2,1) = -2.40411 is the Digamma function

Γ(x ) is the Gamma function; for x  ∈ integer, Γ(x +1) = x !
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Table 2.
Relevant features of the software packages tested

Optimization Warning on File format Starting point Standard error Fitting other distributions
software procedure unsuccessful fit flexible suggested provided requires:
PASTIS Quasi-Newton no yes yes no programming in C

(Chandler, 1965)

QMPE Conjugate gradient yes no: yes yes programming in Fortran
(Press et al., 1986) 2 columns

DISFIT Sequential quadratic yes no: yes yes programming in Fortran 
(Gill et al., 1986) 1 sub. per file *

MATHEMATICA Conjugate gradient yes yes no ** no ** algebraic formula

Note
*: in addition, a special library NPSOL must be obtained from their authors (Gill, Murray, Sanders and Wright, 1986);
**: These features can be added.

Table 2
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Table 3 .
Parameter values used to generate random values as a function of the distribution.

Distribution Parameter θ Parameter value Mean Standard 
deviation

Skew

ex-Gaussian {µ , σ , τ } 910.56 44.721 89.443 1000 100 1.43
Gumbel {µ , σ } 955 74 998 94.9 1.13955
Lognormal {κ , µ  σ } 745 5.45 0.36 993 92.4 1.16
Wald {κ , µ  λ } 725 275 2000 1000 102 1.11
Weibull {α , β , γ } 800 220 2.0 995 102 0.631

Table 3
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200
225

250
275b

`

760
780

800
820à
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Appendix C: Examples of commands used for each of the for software

Listing 1: Typical PASTIS call for a file with 2 columns, the second being the dependent (RT) variable
pastis -r file.dat -w file.out -c 2 -d 2 -a WEIBULL

Listing 2: Typical QMPE script. Extra information at the end of each line are comments.
file.dat input file
file output stem
1 measurement precision, i.e. 2 epsilon
1 mode: 0: silent, 1: one output/cell, 2: trace mode
1.0E-09 proportional objective function change tolerance
1.0E-04 proportional L(inf) norm tolerance
150 maximum number of iterations allowed
2 distribution to fit 1: exgaussian, 2: weibull, …
2 type of analysis, 1: raw fitting, 2: quantile fitting
1 input type, 1: raw data, 2: quantiles, 3: vincentiles
32 how many quantiles to compute since raw is provided

Listing 3: Typical DISFIT script. Lines begining with ! are comments
title "fitting file.dat using a Weibull distribution"
!
! subject number and use of starting values heuristics
ns=1  st=yes  bs=0
!
! input file and number of observation (missing is -999)
df=file.dat  nc=1  no=250  id="One_subject"  mi=-999  cp=0
!
! truncation information
tt=no  th=no  xl=no  xh=no
!
! description of the distribution to fit, with starting
! values (not used since st=yes) and range of each parameters.
di=wei
a=[1 200.0 50.0 2000.0] c=[2 2.0 0.5 3.6] k=[3 750.0 400.0 1200.0]
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Listing 4: Typical MATHEMATICA script. Lines enclosed between (* and *) are comments.
(* Load distribution-related package *)
<< Statistics`ContinuousDistributions`

(* read the input file into "data"*)
data = ReadList["file.dat", Real];

(* define the log likelihood function *)
LogLikelihood[data_, a_, b_, c_] :=
    -Plus @@ Log[PDF[WeibullDistribution[c,b],data-a] /;a<Min[data]

(* error: return a large value if the parameter a is too large *)
LogLikelihood[data_, a_, b_, c_] :=
    $MaxMachineNumber /;a>=Min[data]

(* perform a search over the parameter space *)
(* in Mathematica, a direct search requires two starting values *)
FindMinimum[LogLikelihood[data, a, b, c],
    {a, {200, Min[data]}},
    {b, {40, 60}},
    {c, {0.5, 3}}
]
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